首页> 外文OA文献 >Surface Currents Associated with External Kink Modes in Tokamak Plasmas during a Major Disruption
【2h】

Surface Currents Associated with External Kink Modes in Tokamak Plasmas during a Major Disruption

机译:表面电流与托卡马克等离子体中的外部扭结模式相关联   在重大中断期间

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The surface current on the plasma-vacuum interface during a disruption eventinvolving kink instability can play an important role in driving current intothe vacuum vessel. However, there have been disagreements over the nature oreven the sign of the surface current in recent theoretical calculations basedon idealized step-function background plasma profiles. We revisit suchcalculations by replacing step-function profiles with more realistic profilescharacterized by strong but finite gradient along the radial direction. It isshown that the resulting surface current is no longer a delta-function currentdensity, but a finite and smooth current density profile with internalstructure, concentrated within the region with strong plasma pressure gradient.Moreover, this current density profile has peaks of both signs, unlike thedelta-function case with a sign opposite to, or the same as the plasma current.We show analytically and numerically that such current density can be separatedinto two parts, with one of them, called the convective current density,describing the transport of the background plasma density by the displacement,and the other part that remains, called the residual current density. It isargued that consideration of both types of current density is important and canresolve past controversies.
机译:在涉及扭结不稳定性的破坏事件期间,等离子体-真空界面上的表面电流可在驱动电流进入真空容器中发挥重要作用。然而,在基于理想的阶跃函数本底等离子体轮廓的最新理论计算中,关于表面电流的本质或符号存在分歧。我们通过将阶跃函数轮廓替换为更逼真的轮廓来重新审视此类计算,这些轮廓的特征是沿径向方向具有强而有限的梯度。结果表明,所得的表面电流不再是三角函数电流密度,而是具有内部结构的有限且平滑的电流密度曲线,集中在等离子体压力梯度较大的区域内。此外,该电流密度曲线具有两个符号的峰值,与通过分析和数字显示,这种电流密度可以分为两部分,其中之一称为对流电流密度,描述了背景的传输;等离子体的密度由位移和剩余的其余部分组成,称为剩余电流密度。有人认为,考虑两种电流密度很重要,并且可以解决过去的争议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号